• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pillar-based phononic crystal structures for high-frequency applications

    Thumbnail
    View/Open
    POURABOLGHASEM-DISSERTATION-2016.pdf (25.88Mb)
    Date
    2016-01-05
    Author
    Pourabolghasem, Reza
    Metadata
    Show full item record
    Abstract
    The physical mechanisms of phononic bandgap (PnBG) formation in the pillar-based phononic crystals (PnCs) are theoretically studied. The comparison of PnBGs in three different lattice types (i.e., square, triangular, and honeycomb) with different pillar geometries shows that different PnBGs have varying degrees of dependency on the lattice symmetry based on the interplay of the local resonances and the Bragg effect. The details of this interplay are discussed. The significance of locally resonating pillars on PnBGs is discussed and verified by examining the PnBG position and width in perturbed lattices. It is shown that the PnBGs caused by the local resonance of the pillars are more resilient to the lattice perturbations than those caused by Bragg scattering. Furthermore, strong experimental evidence is presented for the existence of a complete phononic bandgap, for Lamb waves, in the high frequency regime (i.e., 800 MHz) for a pillar-based PnC membrane with a triangular lattice of gold pillars on top. The results of experiments are analyzed, and the physics behind the attenuation in different spectral windows is explained methodically by assessing the type of Bloch modes and the in-plane symmetry of the displacement profile. In addition, a theoretical design for a waveguide/resonator device operating at the GHz frequency range based on the pillar-based PnC membranes is presented and experimental evidence is provided for the waveguiding property of the proposed structure. Additionally, several designs for surface acoustic wave (SAW) PnCs and PnC-based waveguides are introduced and theoretically studied. These designs are optimized to provide low radiation loss and high design flexibility in terms of engineering the frequency and the number of guided modes.
    URI
    http://hdl.handle.net/1853/58148
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology