• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A force and thermal sensing skin for robots in human environments

    Thumbnail
    View/Open
    WADE-THESIS-2017.pdf (21.74Mb)
    Force and Thermal Sensing Skin Experimental Evaluation.mp4 (17.73Mb)
    Date
    2017-04-25
    Author
    Wade, Joshua Caleb
    Metadata
    Show full item record
    Abstract
    Working together, heated and unheated temperature sensors can recognize contact with different materials and contact with the human body. As such, distributing these sensors across a robot’s body could be beneficial for operation in human environments. We present a stretchable fabric-based skin with force and thermal sensors that is suitable for covering areas of a robot’s body, including curved surfaces. It also adds a layer of compliance that conforms to manipulated objects, improving thermal sensing. Our design addresses thermal sensing challenges, such as the time to heat the sensors, the efficiency of sensing, and the distribution of sensors across the skin. It incorporates small self-heated temperature sensors on the surface of the skin that directly make contact with objects, improving the sensors’ response times. Our approach seeks to fully cover the robot’s body with large force sensing taxels, but treats temperature sensors as small, point-like sensors sparsely distributed across the skin. We present a mathematical model to help predict how many of these point-like temperature sensors should be used in order to increase the likelihood of them making contact with an object. To evaluate our design, we conducted tests in which a robot arm used a cylindrical end effector covered with skin to slide objects and press on objects made from four different materials. After assessing the safety of our design, we also had the robot make contact with the forearms and clothed shoulders of 10 human participants. With 2.0 s of contact, the actively-heated temperature sensors enabled binary classification accuracy over 90% for the majority of material pairs. The system could more rapidly distinguish between materials with large differences in their thermal effusivities (e.g., 90% accuracy for pine wood vs. aluminum with 0.5 s of contact). For discrimination between humans vs. the four materials, the skin’s force and thermal sensing modalities achieved 93% classification accuracy with 0.5 s of contact. Overall, our results suggest that our skin design could enable robots to recognize contact with distinct task-relevant materials and humans while performing manipulation tasks in human environments.
    URI
    http://hdl.handle.net/1853/58258
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Mechanical Engineering Theses and Dissertations [4087]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology