• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computational exploration of thermodynamic properties of porous and layered materials

    Thumbnail
    View/Open
    DEMIR-DISSERTATION-2016.pdf (4.382Mb)
    Date
    2016-05-17
    Author
    Demir, Hakan
    Metadata
    Show full item record
    Abstract
    In this thesis, ab-initio based force fields were developed for Ar and Xe adsorption in six different MOFs to predict adsorption properties and compare this non-empirical approach to the experimental results and generic force field (FF) simulations. Using three DFT functionals (PBE-D2, vdW-DF, and vdW-DF2) in periodic models of M-MOF-74 (M= Co, Ni, Zn, Mg), ZIF-8 and Cu-BTC, first principles based FFs are derived. Selective separation of contaminants from ambient air is another crucial field since some of those contaminants can be detrimental to health. Moreover, UiO-66 is computationally functionalized with more than 30 functional groups using cluster and periodic systems and binding energies of NH3, H2S, CO2 and H2O are calculated to rank the functionalized UiO-66 materials for selective separation of contaminants in humid air conditions. Finally, the phase stability and transitions of 2-D layered ferroelectric materials, CuInP2Q6 (Q=S, Se), are investigated. The phase transition of CuInP2Se6 is studied using DFT calculations and phonon theory to identify instabilities at zone center and boundaries of the structure while possible spinodal decomposition regions of CuxInyP2S6 are determined with respect to Cu concentration by combining DFT calculations with thermodynamic relations.
    URI
    http://hdl.handle.net/1853/58570
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1516]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology