• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Acclimating across healthy and degraded reefs

    Thumbnail
    View/Open
    DELL-DISSERTATION-2016.pdf (1.426Mb)
    Date
    2016-05-31
    Author
    Dell, Claire Louise Alice
    Metadata
    Show full item record
    Abstract
    As a result of human activities, many environments are becoming fragmented into areas with different community compositions and selective regimes. The coral reefs of Fiji for example, are divided into ‘fished areas’ (fragments subjected to fishing and trampling) and ‘protected areas’ (fragments with little human pressure) that occur in close proximity and now have differing community compositions and selective regimes. Theory predicts that the species able to survive in such conditions should have highly plastic genotypes allowing them to acclimatise to diverse habitats without the time lag required for local adaptation. Here we use two species -Epinephelus merra (a small grouper) and Sargassum polycystum C. Agardh (a brown macroalga)- which are found in both fished and protected reefs, to investigate this plastic response and understand how these species cope in healthy versus degraded environments. We found that the fish E. merra exhibits plasticity in diet and feeds lower in the food chain in fished reefs than similarly sized conspecifics in protected reefs. The seaweed S. polycystum exhibits plasticity in defensive traits and is able to induce increased defenses in response to being partially consumed. In addition, we found that dense stands of S. polycystum increased the survival and growth of both recruit-sized and mature-sized S. polycystum ramets, suggesting that Sargassum beds protect conspecifics from grazing by herbivorous fishes and construct conditions that facilitate their growth. Implications for management are discussed.
    URI
    http://hdl.handle.net/1853/58580
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Biology Theses and Dissertations [464]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology