• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel core analysis method for prismatic high temperature gas reactors

    Thumbnail
    View/Open
    HUNING-DISSERTATION-2016.pdf (3.507Mb)
    Date
    2016-07-29
    Author
    Huning, Alexander Jared
    Metadata
    Show full item record
    Abstract
    A new transient thermal hydraulic method for simulating prismatic HTGRs during a loss-of-forced-circulation (LOFC) accident is presented. This expands upon the steady state thermal hydraulic methodology presented in the Author’s MS Thesis. However, several key additions have been made. The largest is the addition of a transient analysis method that computes the fluid mass, velocity (momentum), and energy throughout a transient. This is achieved by using a well-documented, semi-implicit pressure-correction scheme. The fluid volumes are assumed to be 1-D to allow for the use of standard heat transfer and pressure drop correlations. Simple transient velocity and pressure boundary conditions are employed. Helium is assumed to be an ideal gas with constant specific heats, which allows for the use of simple thermodynamic relationships to close the fluid model. Models for reactor containment cooling (RCCS) heat transfer and decay heat generation have also been added. Using the method developed here, both the pressurized (P-LOFC) and de-pressurized (D-LOFC) accident have been simulated. Results from these analyses confirm the HTGR’s key safety advantage over all LWRs and most other advanced reactor designs, which is to have passive, indefinite cooling capability for the most limiting accident.
    URI
    http://hdl.handle.net/1853/58615
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Mechanical Engineering Theses and Dissertations [4086]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology