• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrical resistance in carbon nanotube – insulator – metal diode arrays for optical rectenna

    Thumbnail
    View/Open
    SHAH-THESIS-2016.pdf (14.34Mb)
    Date
    2016-08-01
    Author
    Shah, Etizaz Hassan
    Metadata
    Show full item record
    Abstract
    Vertical tunnel diode arrays made from multiwall carbon nanotubes (MWCNTs) have shown recent promise for developing a practical optical rectenna, which is a device to convert electromagnetic waves at optical frequencies to direct current. Realizing an optical rectenna requires an antenna to be coupled to a diode that operates on the order of PHz (switching speed on the order of fs). Previously, we have demonstrated an optical rectenna device by engineering MWCNT-insulator-metal (MWCNT-I-M) tunnel diodes at the tips of vertically aligned MWCNT arrays, which act collectively as the antenna. However, the high electrical resistance of the MWCNT-I-M diode resulted in poor impedance matching between diode and antenna, which limited the rectified power. Here, we address this issue of impedance mismatch through a series of experiments designed to elucidate contributions to the total electrical resistance of the device. Different combinations of metals, and metal and insulator thicknesses were tested for reduced contact resistance, while maintaining a working diode. Another development towards reducing resistance was to open MWCNT tips using oxygen plasma, which exposed multiple walls for bonding rather than just outer wall of closed tip CNTs. These developments were combined to reduce zero-bias resistance of MWCNT-I-M diode arrays to as low as 100 Ωcm2, which is 75 times lower than in our previous report.
    URI
    http://hdl.handle.net/1853/58198
    http://hdl.handle.net/1853/58616
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Mechanical Engineering Theses and Dissertations [4087]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology