• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A methodology for determining critical decision points through analysis of wargame data

    Thumbnail
    View/Open
    ABDELAAL-DISSERTATION-2016.pdf (8.990Mb)
    Date
    2016-08-01
    Author
    Abdelaal, Mahmoud Adel
    Metadata
    Show full item record
    Abstract
    Utilizing the latest in technology, today’s military is engaged in complex conflicts and operations across the globe. These disparate operations can occur simultaneously and within the same theater. Joint operational planning processes are often characterized as data, labor and time intensive, and courses of action (COA) must be planned and executed within the enemy’s decision making cycle. This represents a computational burden that scales dramatically with increasing numbers of systems and actors within the modern battlespace. The most time consuming part of the planning process is COA analysis and wargaming. This highlights the research objective developing a methodology to aid military planners by utilizing a new process for analyzing and evaluating COA alternatives. By analyzing the effect of the interaction of the terrain, systems, and actors within the battlespace, it is hypothesized that leading indicators and metrics associated with a specific battlefield configuration will allow the identification of “rules of thumb” to follow. Wargaming different scenarios will result in a heterogeneous database to analyze because the variations in plan that will be simulated will have an effect on the protraction or brevity of the simulated operation. Furthermore, this heterogeneous data is temporal in nature, where the metrics are time series associated with the occurrences on the simulated battlefield. Using these data constraints to develop the methodology, Hierarchical Agglomerative Clustering, using the Dynamic Time Warping algorithm for similarity measurement were utilized. Additionally, a novel method for cluster validation was created to establish relative value between different linkage algorithms using the similarity height of dendrograms and the statistical significance of the within cluster outcomes. The primary contribution of this thesis is offering of enhanced COA analyses of wargame data allowing the identification of decision points and heuristics. As a result of the formulation and the experiments, this work has aided in the creation of a cluster validation index that considers inner cluster similarity and the statistical significance of the outcome of scenarios. Additionally, this work has contributed by the determination of the effect of scaling of complexity in the number of elements and in the complexity of the underlying wargame on the selection and performance of linkage algorithms, HSig Index, identification of decision points and heuristics.
    URI
    http://hdl.handle.net/1853/58624
    Collections
    • Aerospace Systems Design Laboratory Theses and Dissertations [249]
    • Georgia Tech Theses and Dissertations [23878]
    • School of Aerospace Engineering Theses and Dissertations [1440]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology