• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development and control of strength anisotropy and crystallographic texture during extrusion of aluminum 2195 and 7075

    Thumbnail
    View/Open
    DICKSON-DISSERTATION-2017.pdf (59.72Mb)
    Date
    2017-07-17
    Author
    Dickson, Judith Marie
    Metadata
    Show full item record
    Abstract
    The addition of lithium to high strength aluminum alloys significantly improves specific strength. Indeed, for aerospace applications, the third generation Al-Cu-Li alloy, Al 2195, is competitive with composite materials. However, unlike its non-lithium containing counterpart, Al 7075, it suffers from undesirable anisotropic mechanical properties in low aspect ratio extruded sections. To investigate the origins of this anisotropy, Al 2195 and Al 7075 were systematically extruded over a range of aspect ratios from 2-15 while maintaining a constant extrusion ratio. This study found that the interaction of high volume fractions of the Copper crystallographic texture with the strengthening precipitates in Al 2195 is responsible for the poor mechanical performance in low aspect ratio regions. Through a series of rolling studies, a higher initial billet temperature and a slower ram speed were hypothesized to minimize the Copper texture component in extruded Al 2195. As press trials are often cost prohibitive and lead to convoluted results due to imperfect press repeatability, the effects of extrusion press parameters on the final microstructure and properties would ideally be studied via simulations. However, it was found that the commercially available finite element software, HyperXtrude, was not able to predict the effects of press parameters on mechanical anisotropy. It was therefore recommended that the Barlat Method for prediction of anisotropic yield strengths be integrated into the HyperXtrude solver to allow for future computational parametric studies on the effects of extrusion variables on final strength anisotropy in extruded aluminum alloys.
    URI
    http://hdl.handle.net/1853/58709
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Materials Science and Engineering Theses and Dissertations [986]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology