• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Calculation, utilization, and inference of spatial statistics in practical spatio-temporal data

    Thumbnail
    View/Open
    CECEN-DISSERTATION-2017.pdf (8.041Mb)
    Date
    2017-08-02
    Author
    Cecen, Ahmet
    Metadata
    Show full item record
    Abstract
    The direct influence of spatial and structural arrangement in various length scales to the performance characteristics of materials is a core premise of materials science. Spatial correlations in the form of n-point statistics have been shown to be very effective in robustly describing the structural features of a plethora of materials systems, with a high number of cases where the obtained futures were successfully used to establish highly accurate and precise relationships to performance measures and manufacturing parameters. This work addresses issues in calculation, representation, inference and utilization of spatial statistics under practical considerations to the materials researcher. Modifications are presented to the theory and algorithms of the existing convolution based computation framework in order to accommodate deformed, irregular, rotated, missing or degenerate data, with complex or non-probabilistic state definitions. Memory efficient personal computer oriented implementations are discussed for the extended framework. A universal microstructure generation framework with the ability to efficiently address a vast variety of geometric or statistical constraints including those imposed by spatial statistics is assembled while maintaining scalability, and compatibility with structure generators in literature.
    URI
    http://hdl.handle.net/1853/58723
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23877]
    • School of Computational Science and Engineering Theses and Dissertations [100]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology