• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Building trust in the user I/O in computer systems

    Thumbnail
    View/Open
    JANG-DISSERTATION-2017.pdf (12.53Mb)
    Date
    2017-07-26
    Author
    Jang, Yeong Jin
    Metadata
    Show full item record
    Abstract
    User input plays an essential role in computer security because it can control system behavior and make security decisions in the system. System output to users, or user output, is also important because it often contains security-critical information that must be protected regarding its integrity and confidentiality, such as passwords and user’s private data. Despite the importance of user input and output (I/O), modern computer systems often fail to provide necessary security guarantees on them, which could result in serious security breaches. This dissertation aims to build trust in the user I/O in computer systems to keep the systems secure from attacks on the user I/O. To this end, we analyze the user I/O paths on popular platforms including desktop operating systems, mobile operating systems, and trusted execution environments such as Intel SGX, and identified that threats and attacks on the user I/O can be blocked by guaranteeing three key security properties of user I/O: integrity, confidentiality, and authenticity. First, GYRUS addresses the integrity of user input by matching the user’s original input with the content of outgoing network traffic to authorize user-intended network transactions. Second, M-AEGIS addresses the confidentiality of user I/O by implementing an encryption layer on top of user interface layer that provides user-to-user encryption. Third, the A11Y ATTACK addresses the importance of verifying user I/O authenticity by demonstrating twelve new attacks. Finally, to establish trust in the user I/O in a commodity computer system, I built a system called SGX-USB, which combines all three security properties to ensure the assurance of user I/O. The implemented system supports common user input devices such as a keyboard and a mouse over the trusted channel. Having assurance in user I/O allows the computer system to securely handle commands and data from the user by eliminating attack pathways to a system’s I/O paths.
    URI
    http://hdl.handle.net/1853/58732
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23877]
    • School of Computer Science Theses and Dissertations [79]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology