• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design of SIGE BICMOS RF building blocks for extreme-environment applications

    Thumbnail
    View/Open
    SONG-DISSERTATION-2016.pdf (3.215Mb)
    Date
    2016-11-07
    Author
    Song, Ickhyun
    Metadata
    Show full item record
    Abstract
    The objective of this research is to understand the behavior of radio-frequency (RF) circuits under extreme-environment condition and to investigate the potential mitigation solution for single-event effects (SEEs). In this work, silicon-germanium (SiGe) heterojunction-bipolar-transistor (HBT) technology has been utilized for the design of SEE-hardened RF switches, low-noise amplifiers (LNAs), and mixers. For SEE-hardened RF circuits, the use of inverse-mode SiGe HBTs has been studied in terms of both RF performance and SEE sensitivity. With the SEE-mitigated RF building blocks, the integrated receivers have been designed and characterized in order to confirm function-level mitigation. The impact of technology scaling on the applicable SEE-mitigation techniques has been addressed in this work. The inverse-mode SiGe HBTs have exhibited significantly improved RF performance, broadening their use to active RF gain stages. In addition, cryogenic operations of the SEE-hardened LNA have been characterized for a wider range of extreme-environment applications. High-performance RF building blocks for wideband transceivers and phased-array radar systems have been also proposed in this work. An active wideband power divider/combiner supporting bi-directional operation has been implemented in SiGe BiCMOS platform. And a low-loss wideband digital-step attenuator has been demonstrated with low phase/amplitude imbalance.
    URI
    http://hdl.handle.net/1853/59139
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology