• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Heparin microparticle-mediated delivery of BMP-2 and pluripotent stem cell morphogens for bone repair

    Thumbnail
    View/Open
    HETTIARATCHI-DISSERTATION-2016.pdf (21.65Mb)
    Date
    2016-11-08
    Author
    Hettiaratchi, Marian Hirushika
    Metadata
    Show full item record
    Abstract
    The delivery of bone morphogenetic protein-2 (BMP-2) offers a promising means of stimulating endogenous repair mechanisms to heal severe bone injuries. However, clinical application of growth factor therapy is hindered by the lack of adequate biomaterials to localize BMP-2 delivery. Glycosaminoglycans, such as heparin, have the capacity to strongly bind BMP-2 and other growth factors implicated in bone regeneration, and present the opportunity to locally deliver growth factors to injury sites. Moreover, pluripotent stem cells (PSCs) secrete many potent heparin-binding growth factors that have been implicated in tissue regeneration following cell transplantation and may provide cues for repair. Thus, heparin can also be used to concentrate and deliver PSC-derived morphogens to tissue injury sites, thereby overcoming challenges associated with PSC transplantation. The goal of this work was to improve growth factor delivery for bone repair by both (1) creating an effective biomaterial for BMP-2 delivery and (2) investigating PSC morphogens as a novel source of therapeutic growth factors. We developed heparin-based microparticles that could bind and retain large amounts of bioactive BMP-2 in vitro and improve BMP-2 retention in vivo, resulting in spatially localized bone formation in a critically sized rat femoral defect. Furthermore, heparin microparticles could also sequester and concentrate complex mixtures of bioactive PSC-secreted proteins, which may be developed into cell-free therapies in the future. Overall, this work broadens current understanding of bone tissue engineering, biomaterial delivery strategies, and stem cell-based therapeutics, and provides valuable insight into developing affinity-based biomaterials for clinical applications.
    URI
    http://hdl.handle.net/1853/59144
    Collections
    • Department of Biomedical Engineering Theses and Dissertations [509]
    • Georgia Tech Theses and Dissertations [22398]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology