• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Liquid metal pumps for enabling heat transfer at extreme temperatures

    Thumbnail
    View/Open
    AMY-THESIS-2017.pdf (12.63Mb)
    video of typical flow during main test.mov (41.71Mb)
    Date
    2017-08-16
    Author
    Amy, Caleb A.
    Metadata
    Show full item record
    Abstract
    Thermal energy is fundamental to most power generation and many industrial processes, and because of the entropy associated with it, is the most valuable at the highest temperature. To use this heat, it must be transported and molten metals are an ideal heat transfer media because they can have high temperature stability and high heat transfer coefficients. The ability to pump a fluid is key because it enables circulation and includes the thermal and chemical constraints seen by an entire system, with the added challenge of dynamic sealing, stress, and wear. In this thesis, I report the first successful demonstration of an all ceramic mechanical pump, that was used to continuously circulate liquid tin at ~ 1200-1400°C, in an all ceramic circulation loop, for 72 hours without failure. The design of a medium temperature (600°C) liquid metal pump and an ultra-high temperature (>2000°C) is also presented. This first of a kind demonstration represents a major technological breakthrough, because it now enables heat transfer using a liquid, above 1000°C. This capability is enabling, because the notion of transferring, storing and converting heat at such extreme temperatures has been previously considered infeasible. This new ability represents a major step forward for the fields of heat transfer, energy, and chemical/materials processing and many new concepts are enabled by this approach.
    URI
    http://hdl.handle.net/1853/59178
    Collections
    • School of Mechanical Engineering Theses and Dissertations [3831]
    • Georgia Tech Theses and Dissertations [22398]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology