• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimation of parameters in the generalized graded unfolding model using a genetic algorithm

    Thumbnail
    View/Open
    WILLIAMS-DISSERTATION-2017.pdf (1.071Mb)
    Date
    2017-08-28
    Author
    Williams, Elizabeth
    Metadata
    Show full item record
    Abstract
    In the current study, a genetic algorithm was used in conjunction with the expectation-maximization algorithm to estimate parameters in a polytomous unfolding IRT model known as the generalized graded unfolding model (GGUM). One advantage of using a genetic algorithm for IRT parameter estimation is that this global optimization procedure is not easily affected by local maxima in the likelihood function – a condition that is often encountered in unfolding IRT models including the GGUM. Additionally, because genetic algorithms do not use derivatives to maximize the likelihood function, it is computationally simple and could be deployed efficiently with higher dimensional data. The focus of this study was to implement the genetic algorithm in the context of the GGUM, and then evaluate the speed and accuracy of the resulting parameter estimates Program development was done with the R computer language, and the efficacy of estimates was examined with simulation methods, which systematically vary sample size, test length and number of response categories. The resulting estimation strategy was also illustrated with real data from an abortion attitude questionnaire.
    URI
    http://hdl.handle.net/1853/59209
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Psychology Theses and Dissertations [714]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology