Show simple item record

dc.contributor.advisorGhiaasiaan, Mostafa
dc.contributor.authorPerrella, Matthew Drake
dc.date.accessioned2018-01-22T21:11:13Z
dc.date.available2018-01-22T21:11:13Z
dc.date.created2017-12
dc.date.issued2017-11-08
dc.date.submittedDecember 2017
dc.identifier.urihttp://hdl.handle.net/1853/59239
dc.description.abstractThe regenerator is a critical component of all Stirling and Pulse Tube cryocoolers. It generally consists of a microporous metallic or rare-earth filler material contained within a cylindrical shell. The accurate modeling of the hydrodynamic and thermal behavior of different regenerator materials is crucial to the successful design of cryogenic systems, specifically Stirling and pulse-tube cryocoolers. Previous investigations have used experimental measurements at steady and periodic flow conditions in conjunction with pore-level CFD analysis to determine the pertinent hydrodynamic parameters, namely the Darcy permeability and Forchheimer coefficients. Due to the difficulty associated with experimental measurement at cryogenic temperatures, past investigations where performed at ambient conditions. These results are assumed to be accurate for cryogenic temperatures since, for fully-developed flow, the Darcy and Forchheimer coefficients should depend only on the geometry of the porous medium. There is, however, a pressing need in the literature to determine the hydrodynamic parameters for several regenerator materials under prototypical conditions and verify the validity of the foregoing assumption. In this analysis, regenerators filled with several common materials including spherical Er50Pr50 powder, #400SS mesh, and #325SS mesh were assembled and tested under periodic helium flow at cryogenic temperatures. The mass flow and pressure drop data was correlated with a porous media CFD model to determine the Darcy Permeability and Forchheimer coefficients. These results are compared to the previous investigations at ambient temperature conditions, and the relevance of room-temperature models and correlations to cryogenic temperatures is critically assessed.
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherGeorgia Institute of Technology
dc.subjectHydrodynamic resistance parameters
dc.subjectStirling cryocooler
dc.subjectPulse tube cryocooler
dc.subjectRegenerator
dc.subjectCryogenics
dc.subjectPorous media
dc.titlePeriodic flow hydrodynamic resistance parameters for various regenerator filler materials at cryogenic temperatures
dc.typeDissertation
dc.description.degreePh.D.
dc.contributor.departmentMechanical Engineering
thesis.degree.levelDoctoral
dc.contributor.committeeMemberZhang, Zhuomin
dc.contributor.committeeMemberRanjan, Devesh
dc.contributor.committeeMemberWalker, Mitchell II
dc.contributor.committeeMemberKashani, Ali
dc.date.updated2018-01-22T21:11:13Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record