• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stochastic optimal control - a forward and backward sampling approach

    Thumbnail
    View/Open
    EXARCHOS-DISSERTATION-2017.pdf (4.266Mb)
    Date
    2017-11-15
    Author
    Exarchos, Ioannis
    Metadata
    Show full item record
    Abstract
    Stochastic optimal control has seen significant recent development, motivated by its success in a plethora of engineering applications, such as autonomous systems, robotics, neuroscience, and financial engineering. Despite the many theoretical and algorithmic advancements that made such a success possible, several obstacles remain; most notable are (i) the mitigation of the curse of dimensionality inherent in optimal control problems, (ii) the design of efficient algorithms that allow for fast, online computation, and (iii) the expansion of the class of optimal control problems that can be addressed by algorithms in engineering practice. The aim of this dissertation is the development of a learning stochastic control framework which capitalizes on the innate relationship between certain nonlinear partial differential equations (PDEs) and forward and backward stochastic differential equations (FBSDEs), demonstrated by a nonlinear version of the Feynman-Kac lemma. By means of this lemma, we are able to obtain a probabilistic representation of the solution to the nonlinear Hamilton-Jacobi-Bellman PDE, expressed in form of a system of decoupled FBSDEs. This system of FBSDEs can then be simulated by employing linear regression techniques. We present a novel discretization scheme for FBSDEs, and enhance the resulting algorithm with importance sampling, thereby constructing an iterative scheme that is capable of learning the optimal control without an initial guess, even in systems with highly nonlinear, underactuated dynamics. The framework we develop within this dissertation addresses several classes of stochastic optimal control, such as L2, L1, risk sensitive control, as well as some classes of differential games, in both fixed-final-time as well as first-exit settings.
    URI
    http://hdl.handle.net/1853/59263
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Aerospace Engineering Theses and Dissertations [1440]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology