• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Use of Gaussian mixture distribution models to address non-Gaussian errors in radar target tracking

    Thumbnail
    View/Open
    DAVIS-DISSERTATION-2017.pdf (5.532Mb)
    Date
    2017-11-13
    Author
    Davis, Benjamin Peter
    Metadata
    Show full item record
    Abstract
    If radar measurements are performed in the polar coordinates of range and angle and the error orthogonal to the range dimension is much greater than the error in range, the true error region in Cartesian space is no longer well approximated by a Gaussian distribution. This effect is known as the "contact-lens" effect due to the shape of the error distribution in Cartesian space. In this dissertation, a method is presented for modeling Cartesian converted measurement distributions which suffer from the contact-lens effect using Maximum Likelihood (ML) Gaussian mixture (GM) parameters. In order to allow an efficient implementation of this process in a GM Kalman filter, a novel normalization of the ML parameters is introduced so that parameters can be efficiently stored in a lookup table for real-time use. Additionally, the measurement update process in the resulting GM filter is modified using a preconditioning process so that the GM measurement PDF is located in close proximity to the support of the state estimate PDF. This preconditioning allows fewer GM components to be used in the model, which significantly reduces the computational cost of the tracking. These techniques are then combined into the Measurement-Adaptive Gaussian Mixture Filter (MAGMF), and this filter is applied to tracking with measurements from a 2D monostatic radar, 2D bistatic radar, and 3D monostatic radar. For all three of these cases, the MAGMF is shown to have track accuracy and covariance consistency performance comparable to solutions that use a particle filter that requires significantly more computations.
    URI
    http://hdl.handle.net/1853/59267
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology