• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Protein nanoparticle vaccines

    Thumbnail
    View/Open
    CHANG-DISSERTATION-2017.pdf (4.305Mb)
    Date
    2017-04-06
    Author
    Chang, Timothy Z.
    Metadata
    Show full item record
    Abstract
    Highly conserved pathogen proteins are essential for broadly cross-protective vaccines, but tend to be poorly immunogenic. Protein nanoparticle vaccines made from conserved influenza matrix protein 2 (M2e) trigger specific, adaptive immune responses that soluble protein cannot. Without excipients or adjuvants, protein nanoparticles eliminate the possibility of off-target immune responses, and their abiotic nature makes them amenable to cold chain-independent storage and use. The work described herein (1) tests an expanded range of recombinant influenza proteins as viable components of influenza protein nanoparticle vaccines, (2) establishes the immunological basis behind protein nanoparticle adjuvancy in vitro and in vivo, (3) examines long-term, cold-chain-independent storage of protein nanoparticle vaccines, and (4) explores using molecular adjuvants as nanoparticle coatings for enhancing vaccine efficacy. Nanoparticle size and coating were found to be important design criteria for immunogenic protein nanoparticles, and in vivo biodistribution and in vitro dendritic cell processing of nanoparticles yielded insights into mechanisms of protein nanoparticle adjuvancy. Extended room-temperature wet storage of nanoparticles for up to 3 months was shown to yield no loss in immunogenicity, and the molecular adjuvants flagellin and immunoglobulin were shown to enhance various aspects of the immune response in a mouse immunization model. As cold chain-independent storage is an important goal for disseminating new types of vaccines to the developing world, protein nanoparticles have proven to be an attractive and stable platform technology for the co-delivery of antigen and immunostimulatory adjuvant. Furthermore, the ability of immunoglobulin (Ig) to enhance immune responses to protein nanoparticles yields fundamental insights into the innate immunofeedback mechanisms mediated by this protein. In addition to providing a host-derived means of enhancing adjuvancy, Ig-opsonized protein nanoparticles could serve as a tool for further investigations in the broader field of immunoengineering.
    URI
    http://hdl.handle.net/1853/59778
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1516]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology