• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Complex adsorption modeling for nuclear energy applications

    Thumbnail
    View/Open
    LADSHAW-DISSERTATION-2017.pdf (13.57Mb)
    Date
    2017-04-06
    Author
    Ladshaw, Austin Pittman
    Metadata
    Show full item record
    Abstract
    Adsorption is a complex physio-chemical process by which molecules are attached to surfaces of solid particles. The type of adsorption that occurs may often depend on the media the phenomenon is occurring in, making the design of models for various adsorption systems an arduous task. Regardless of the media, however, the basic mechanisms of the adsorption process are the same. Therefore, a plausible approach to the development of adsorption models in different systems would be to design a generalized mathematical framework with all the necessary methods built in that will be used as a platform to develop system specific adsorption models. In this work, the investigation and development of such a structure will be discussed and a host of system specific adsorption models that have been developed on top of that framework will be detailed. The specific problems of interest are all related to nuclear energy and specifically the availability of uranium in the Nuclear Fuel Cycle via recycling spent uranium fuel rods and capturing new raw uranium from seawater. In recycling spent uranium, the reprocessing procedure produces numerous gas pollutants that must be removed from the off-gases before emission to the atmosphere. To facilitate the design of that capture system, adsorption models have been developed to predict isothermal equilibria of complex gas mixtures and to quantify the rates of adsorption for various adsorbent materials. For recovering uranium from seawater, two different models were produced: (i) a predictive, multi-ligand adsorption model to incorporate effects of pH, ionic strength, and competing metals and (ii) an analytical model for quantifying the impact of current velocity on the mass transfer limitations of braided fiber adsorbents. The culmination of these adsorption models will provide tools for scientists and engineers to better understand adsorption phenomena in the applications of interest and subsequently design the necessary capture systems at both the front and back ends of the Nuclear Fuel Cycle.
    URI
    http://hdl.handle.net/1853/59787
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Civil and Environmental Engineering Theses and Dissertations [1755]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology