• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    PEG-coated Fe3O4 for li-Ion battery anodes: Effects of crystallite size and surface chemistry

    Thumbnail
    View/Open
    MINNICI-THESIS-2017.pdf (5.495Mb)
    Date
    2017-04-19
    Author
    Minnici, Krysten
    Metadata
    Show full item record
    Abstract
    Battery electrodes are complex mesoscale systems comprised of an active material, conductive agent, current collector, and polymeric binder. Previous work focused on enhancing electron and ion transport in high capacity anode systems by introducing poly[3-(potassium-4- butanoate) thiophene] (PPBT) as a binder component and a polyethylene glycol (PEG) surface coating on magnetite (Fe3O4) nanoparticles. The PPBT/PEG system will be utilized in this work, which takes a closer look at the active material, Fe3O4, and examines the effects of surface chemistry and crystallite size (10 nm vs. 20 nm) on battery performance. Variations in surface chemistry are due to the synthesis methods used for Fe3O4, which use ammonium hydroxide or triethylamine as a base. XRD and TEM initially characterized the active materials to confirm the magnetite phase and crystallite size. DLS and zeta potential measurements demonstrated aggregate size and colloidal stability. SEM images of the electrodes, which are composed of Fe3O4 particles, carbon additives, and the PPBT binder, indicate that the bases produce different morphologies. The Fe3O4 particles synthesized with ammonium hydroxide appear more dispersed relative to those made with triethylamine, which could have a significant impact on the battery performance. Furthermore, XPS and FTIR data indicate that these bases produce difference chemical interactions within the electrode. Electrochemical testing demonstrates that the triethylamine-based electrode has a higher capacity and better capacity retention over 100 cycles at 0.3C as compared to the ammonium hydroxide-based electrode. With regards to differences in active material size, the electrodes with 20 nm crystallite size Fe3O4 initially have a higher capacity, but the electrodes with 10 nm crystallite size Fe3O4 have better capacity retention over 100 cycles at 0.3C. Rate capability testing and electrical impedance confirm the superior performance of triethylamine derived electrodes and the 10 nm crystallite size.
    URI
    http://hdl.handle.net/1853/59796
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1516]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology