• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hepatitis B vaccination using a dissolvable microneedle patch

    Thumbnail
    View/Open
    PEREZCUEVAS-THESIS-2017.pdf (3.387Mb)
    Date
    2017-04-28
    Author
    Perez Cuevas, Monica Beatriz
    Metadata
    Show full item record
    Abstract
    Despite improved vaccination rates against hepatitis B, there remain critical barriers to addressing gaps in vaccination coverage. The need of an effective supply chain, vaccine waste management, trained healthcare providers and cost are all issues that impede mass vaccination campaigns around the world. Microneedle patches have been proposed as an alternative mode of vaccination. Microneedle patches consist of micron-scale projections that are capable of disrupting the stratum corneum by creating holes in the skin to deliver therapeutic agents. Small and lightweight, microneedle patches are a promising alternative to the bulky multi-dose vials and syringes currently used in mass vaccination campaigns. Furthermore, the high density of antigen presenting cells in the the skin make transcutaneous immunization via microneedles advantageous, as they target vaccine cargo to the topmost layer of the skin. The key goal of this project was to develop a microneedle patch for hepatitis B vaccination that is simple to administer and of comparable immunogenicity to conventional intramuscular vaccination. Trehalose was used as a stabilizing excipient for both coated metal and dissolvable microneedles. Moreover, patches were used in vivo to compare the elicited immune response in both mice and rhesus macaques. Additionally, the mechanical properties of our microneedle patch were evaluated via both theoretical and experimental approaches to predict failure force. This work shows that microneedle patches can successfully encapsulate and deliver hepatitis B antigen to generate a strong and sustained immune response in multiple animal models.
    URI
    http://hdl.handle.net/1853/59807
    Collections
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1438]
    • Georgia Tech Theses and Dissertations [22398]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology