Show simple item record

dc.contributor.advisorEthier, C. Ross
dc.contributor.authorWang, Ke
dc.date.accessioned2018-05-31T18:11:53Z
dc.date.available2018-05-31T18:11:53Z
dc.date.created2018-05
dc.date.issued2018-01-03
dc.date.submittedMay 2018
dc.identifier.urihttp://hdl.handle.net/1853/59824
dc.description.abstractGlaucoma is the second leading cause of blindness. However, the precise mechanisms leading to vision loss in this disease remain unknown. Increased intraocular pressure (IOP) has been recognized as the most important risk factor, and lowering IOP is currently the only effective treatment for glaucoma. Unfortunately, pressure lowering usually only slows progression and does not cure the disease. The mechanical properties of the trabecular meshwork (TM) have been suggested to differ significantly between glaucomatous eyes versus unaffected eyes. This is important because the TM has a major influence on IOP. The objective of this work is to develop computer modeling and experimental tools to characterize TM stiffness in situ for human and mouse eyes, and to evaluate the role of mechanical properties of TM in influencing IOP across different conditions. We developed an inverse finite element method to estimate TM stiffness in dissected anterior wedges from 6 normal and 5 glaucomatous human eyes, in combination with optical coherence tomography (OCT) imaging. The results obtained from this method were also compared to direct measurements using atomic force microscopy (AFM). We showed that TM stiffness was higher, but only modestly so, in glaucomatous patients. Interestingly, outflow facility in both normal and glaucomatous human eyes appeared to associate with TM stiffness. We then went on to study TM in mice, first developing a cryosection-based AFM technique to localize and directly measure compressive Young’s modulus of TM. We found a significant correlation between TM stiffness and outflow resistance in wild-type mice. Further, we found that local DEX treatment in live mice can induce higher IOP and stiffer TM, and that a significant correlation between TM stiffness and outflow resistance also existed in DEX-treated mice. Together these findings suggest that TM stiffness might be a surrogate marker for conventional outflow pathway function. This work motivates development of therapies to alter TM stiffness, or the factors underlying TM biomechanical property regulation, as potential novel alternative treatments for control of ocular hypertension in glaucoma.
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherGeorgia Institute of Technology
dc.subjectGlaucoma
dc.subjectTrabecular meshwork
dc.subjectStiffness
dc.titleMechanical properties of trabecular meshwork
dc.typeDissertation
dc.description.degreePh.D.
dc.contributor.departmentBiomedical Engineering (Joint GT/Emory Department)
thesis.degree.levelDoctoral
dc.contributor.committeeMemberStamer, W. Daniel
dc.contributor.committeeMemberPardue, Machelle
dc.contributor.committeeMemberGarcia, Andres J.
dc.contributor.committeeMemberSulchek, Todd
dc.date.updated2018-05-31T18:11:53Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record