• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Conceptual thermal response modeling, testing, and design of flexible heatshield insulation materials

    Thumbnail
    View/Open
    ROSSMAN-DISSERTATION-2018.pdf (5.191Mb)
    Date
    2018-01-12
    Author
    Rossman, Grant Andrew
    Metadata
    Show full item record
    Abstract
    Flexible Thermal Protection Systems (FTPS) have been investigated to support many applications, including thermal protection of inflatable atmospheric entry vehicles. This flexible blanket is composed of a stack of material sheets, including heat rate resistant outer fabrics, heat load resistant insulation, and an air-tight gas barrier to prevent pressure leaks. This dissertation advances the state-of-the-art of thermal modeling, material property testing, and design of FTPS. In this investigation, a one-dimensional (1D) thermal response model is used to predict in-depth temperatures of FTPS layups during arc-jet ground testing. An extended inverse multi-parameter estimation methodology is developed to improve thermal model prediction accuracy. This method utilizes concepts from inverse heat transfer analysis, parameter estimation, and probabilistic analysis. Thermal response model input parameters are adjusted to minimize the error between temperature predictions and in-depth temperature measurements from arc-jet ground testing. Some FTPS insulators experience decomposition under extreme heating conditions, while others do not. In this investigation, a thermogravimetric analysis (TGA) experimental campaign was designed and executed to further characterize fibrous insulators that undergo decomposition. This material testing methodology was developed to obtain the approximate distribution of activation energy. Associated activation energies were inserted into corresponding thermal response models to improve temperature prediction accuracy. In this investigation, a simulation-based FTPS insulator design methodology is developed to obtain a final FTPS insulator configuration. This design process uses inputs such as candidate insulators, insulator material properties, and a nominal mission profile. Candidate insulators are designed efficiently using an improved thermal response model, providing FTPS insulator stackup configurations that satisfy mission requirements.
    URI
    http://hdl.handle.net/1853/59835
    Collections
    • School of Aerospace Engineering Theses and Dissertations [1342]
    • Georgia Tech Theses and Dissertations [22398]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology