• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Point process modeling and optimization of social networks

    Thumbnail
    View/Open
    FARAJTABAR-DISSERTATION-2018.pdf (6.569Mb)
    Date
    2018-04-05
    Author
    Farajtabar, Mehrdad
    Metadata
    Show full item record
    Abstract
    Online social media such as Facebook and Twitter and communities such as Wikipedia and Stackoverflow turn to become an inseparable part of today's lifestyle. Users usually participate via a variety of ways like sharing text and photos, asking questions, finding friends, and favoring contents. Theses activities produce sequences of events data whose complex temporal dynamics need to be studied and is of many practical, economic, and societal interest. We propose a novel framework based on multivariate temporal point processes that is used for modeling, optimization, and inference of processes taken place over networks. In the modeling part, we propose a temporal point process model for joint dynamics of information propagation and structure evolution in networks. These two highly intertwined stochastic processes have been predominantly studied separately, ignoring their co-evolutionary dynamics. Our model allows us to efficiently simulate interleaved diffusion and network events, and generate traces obeying common diffusion and network patterns observed in real-world networks. In the optimization part, we establish the fundamentals of intervention and control in networks by combining the rich area of temporal point processes and the well-developed framework of Markov decision processes. We use point processes to capture both endogenous and exogenous events in social networks and formulate the problem as a Markov decision problem. Our methodology helps finding the optimal policy that balances the high present reward and large penalty on low future outcome in the presence of extensive uncertainties. In the inference part, we propose an intensity-free approach for point processes modeling that transforms the nuisance process to the target one. Furthermore, we train our deep neural network model using a likelihood-free approach leveraging Wasserstein distance between point processes.
    URI
    http://hdl.handle.net/1853/59858
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23877]
    • School of Computational Science and Engineering Theses and Dissertations [100]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology