• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sidewalk roughness data classification by cluster analysis

    Thumbnail
    View/Open
    CHENG-THESIS-2018.pdf (2.191Mb)
    Date
    2018-04-27
    Author
    Cheng, Boyu
    Metadata
    Show full item record
    Abstract
    As sustainability becomes an important aspect of city and transportation planning, individuals are encouraged to choose walking as a mode of travel. In Atlanta, 8.6% of the population under the age 65 are individuals with disabilities, and the sidewalks are indispensable for their mobility; however, many of these sidewalks do not meet the standards of Americans with Disabilities Act (ADA) and need to be repaired. Georgia Institute of Technology researchers developed the Semi-Automated Sidewalk Quality and Safety Assessment System to evaluate and prioritize sidewalk repair projects. This thesis extends the sidewalk roughness levels estimation developed in previous studies. The objectives accomplished in this study are: 1) comparison of the performance of two different tablets for collecting sidewalk vibration data, and 2) exploration of the effects of other related factors on the sidewalk roughness classification result. To accomplish the first goal, k-means cluster analysis is conducted using RMS acceleration data (sidewalk vibration data) collected by Toshiba ThriveTM and Getac® Z710 tablets to classify sidewalk roughness levels. The chi-squared test and Wilcoxon signed-rank test are used to compare the clustering results from the tablets’ RMS acceleration data. This thesis also explores the potential benefits of using other related factors (such as jerk and gyroscope data) on sidewalk roughness classification result. The analytical results show that both tablets generate essentially the same sidewalk roughness classification results and that the sidewalk roughness classification results are dependent of the types of input data used in clustering.
    URI
    http://hdl.handle.net/1853/59901
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Civil and Environmental Engineering Theses and Dissertations [1755]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology