• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Some computationally efficient methods in statistics and their applications in parameter estimation and hypotheses testing

    Thumbnail
    View/Open
    HUANG-DISSERTATION-2017.pdf (1.387Mb)
    Date
    2017-05-15
    Author
    Huang, Cheng
    Metadata
    Show full item record
    Abstract
    Parameter estimation and hypotheses testing are two fundamental problems in statistics. Many existing methods have been developed for the problems with moderate amount of data. Unfortunately, some of those methods could be computationally costly or even infeasible when the volume of data is high. This dissertation is an attempt to fulfill the needs for computationally efficient methods in statistics. The first part of this dissertation describes a one-step approach to enhance an existing simple averaging estimator for distributed statistical inference, which achieve the same convergence rate with the estimator using centralized data. In the second part, we develop an efficient algorithm with reduced computational complexity for distance covariance and apply this new algorithm to derive a test of independence, which enjoys nearly the same asymptotic efficiency with the state-of-the-art distance covariance. The third part is a statistically and computationally efficient two-sample test based on energy statistics and random projections.
    URI
    http://hdl.handle.net/1853/60120
    Collections
    • School of Industrial and Systems Engineering Theses and Dissertations [1381]
    • Georgia Tech Theses and Dissertations [22398]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology