• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimization and application of kilohertz electrical stimulation nerve block to autonomic neural circuits

    Thumbnail
    View/Open
    PATEL-DISSERTATION-2017.pdf (37.41Mb)
    Date
    2017-05-15
    Author
    Patel, Yogi A.
    Metadata
    Show full item record
    Abstract
    Kilohertz Electrical Stimulation (KES) enables a rapid, reversible, and localized inhibition of peripheral nerve activity. Discovered in the early 1900’s, the utility and application of KES nerve block to treat symptoms of various disease states is nearly non-existent. Although a handful of clinical products utilize KES, it is highly debated and unknown if these products provide therapeutic benefit or, if they do, whether they do it by achieving a true conduction block of nerve activity or through other unknown mechanisms of action. Furthermore, many critical questions still re- main about the optimal electrodes, waveforms, and approaches necessary for clinical utility of KES nerve conduction block. In this thesis, I investigate multiple facets of KES nerve conduction block. In Part I, I present electrode optimizations that reduce energy requirements and ensure optimal KES nerve conduction block. I de- scribe critical geometry and materials considerations for electrode design, quantify charge characteristics of KES waveforms, and discuss how electrode characteristics can impact clinical device design. In Part II, I demonstrate the utility of KES in a variety of somatosensory and autonomic neural circuits to treat symptoms arising from immune and metabolic disorders. I show that KES nerve block can selectively block conduction in different fiber-types for selective inhibition of motor and sensory information. I then demonstrate the ability of KES nerve block to provide direction- specific stimulation of the vagus nerve for modulation of the innate immune system. Finally, I demonstrate the utility of KES nerve block for modulation of glucose metabolism. Collectively, the methods, tools, and results presented in this thesis significantly impact the design and clinical translation of KES therapies.
    URI
    http://hdl.handle.net/1853/60121
    Collections
    • Department of Biomedical Engineering Theses and Dissertations [575]
    • Georgia Tech Theses and Dissertations [23877]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology