• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Engineered materials for spatiotemporal regulation of monocyte and macrophage recruitment

    Thumbnail
    View/Open
    OLINGY-DISSERTATION-2017.pdf (47.87Mb)
    Date
    2017-05-19
    Author
    Olingy, Claire Eliza
    Metadata
    Show full item record
    Abstract
    Significant advances have been made in the development of materials that better mimic native tissues through incorporation of biofunctionality, transplantation of exogenous cells, and recapitulation of host tissue mechanical properties. While these advances have generated promising pre-clinical results, biomaterial implantation still faces several challenges, including proper integration into host tissue, vascularization, and circumventing fibrotic responses. Materials that balance the reparative and inflammatory functions of endogenous immune cells represent a promising approach to enhance the efficacy of biomaterial-based regenerative strategies. The objective of this work was to engineer materials that tune myeloid cell recruitment and function to improve post-injury revascularization and tissue repair. We identified a population of monocytes that selectively generates alternatively activated, wound healing macrophages. Subsequently, we examined the effect of biomolecule delivery and adhesive ligand presentation on myeloid cell recruitment. Local delivery of FTY720, a small molecule agonist of sphingosine-1-phosphate receptors, enhanced accumulation of reparative monocytes and macrophages, and promoted revascularization of ischemic and volumetric muscle injuries. We also explored the temporal progression of myeloid cell recruitment in response to adhesive ligand functionalization and angiogenic growth factor delivery from degradable poly(ethylene glycol) hydrogels. These results provide new mechanistic insight and tools to leverage endogenous monocyte and macrophage populations during tissue repair. 
    URI
    http://hdl.handle.net/1853/60134
    Collections
    • Department of Biomedical Engineering Theses and Dissertations [575]
    • Georgia Tech Theses and Dissertations [23877]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology