• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fault zone imaging and earthquake detection with dense seismic arrays

    Thumbnail
    View/Open
    LI-DISSERTATION-2017.pdf (29.45Mb)
    Date
    2017-07-13
    Author
    Li, Zefeng
    Metadata
    Show full item record
    Abstract
    Natural earthquakes occur on faults. The relationship between fault zone structures and earthquake behaviors remains one of the most interesting problems in seismology. As an important tool to detect earthquakes and image the Earth’s interior, seismic arrays have been widely used since the 1960s. Recordings from closely spaced uniform seismometers improved imaging resolution of the Earth’s interior and enhanced detection of small-magnitude earthquakes. However, such an increase in data size also poses a challenge in the way that we used to handle and processing seismic data. Visual inspection and manual selection become less practical and sometimes impossible. My PhD research focuses on obtaining high-resolution seismic properties (e.g., seismic anisotropy and velocity contrast) along major fault zones in California and Turkey, and detecting seismic events/phases multi-scale dense seismic arrays. To process large-size seismic data, I developed several tools to automatically pick P, S and fault zone head waves. Using recently emerging ultra-dense arrays, I proposed a new metric, termed local similarity, to detect weak microseismic signals that are barely above noise level. These studies share the same feature, i.e., using automatic techniques to extract earthquake and structure information from big seismic data recorded by dense or ultra dense arrays. The results are expected to provide valuable information on fault zone structures and microseismic behaviors. The tools developed in these studies can be applied to a wide range of research topics.
    URI
    http://hdl.handle.net/1853/60154
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Earth and Atmospheric Sciences Theses and Dissertations [543]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology