• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Resource-aware and robust image processing for intelligent sensor systems

    Thumbnail
    View/Open
    KO-DISSERTATION-2018.pdf (22.76Mb)
    Date
    2018-07-24
    Author
    Ko, Jong Hwan
    Metadata
    Show full item record
    Abstract
    The objective of this research is to design resource-aware and robust image processing algorithms, system architecture, and hardware implementation for intelligent image sensor systems in the Internet-of-Things (IoT) environment. The research explores the design of a wireless image sensor system with low-overhead pre-processing, which is integrated with a reconfigurable energy-harvesting image sensor array to implement a self-powered image sensor system. For reliable delivery of region-of-interest (ROI) under dynamic environment, the research designs low-power moving object detection with enhanced noise robustness. The system energy is further optimized by a low-power ROI-based coding scheme, whose parameters are dynamically controlled by a low-power rate controller to minimize required buffer size with minimum computational overhead. To enable machine learning based intelligent image processing at the IoT edge devices, the research proposes resource-efficient neural networks. The storage demand is reduced by compressing the neural network weights with an adaptive image encoding algorithm, and the computation demand is optimized by mapping the entire network parameters and operations into the frequency domain. To further improve the energy-efficiency and throughput of the edge device, the research explores inference partitioning of a DNN between the edge and the host platforms.
    URI
    http://hdl.handle.net/1853/60198
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology