• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Near-data processing for dynamic graph analytics

    Thumbnail
    View/Open
    HEIN-DISSERTATION-2018.pdf (4.603Mb)
    Date
    2018-05-22
    Author
    Hein, Eric Robert
    Metadata
    Show full item record
    Abstract
    Massive data rates in cybersecurity, simulation, and social media analysis applications are driving rapid advances in the field of streaming graph analytics. The data structures that enable streaming graph analytics pose unique challenges for high-performance computing system designers. When the sorted, contiguous arrays of static graphs are replaced with the fragmented, linked data structures of dynamic graphs, these systems struggle to reach the memory bandwidth saturation point. Behaviors such as pointer-chasing and poor spatial locality expose the true latency of modern memory devices, which has not kept up with processor clock rates. This dissertation develops a streaming graph benchmark, DynoGraph, which is distinguished from static graph benchmarks by the use of realistic streaming graph inputs and dynamic graph data structures. The benchmark is used to expose performance pitfalls in existing implementations. These insights flow into the design of near-memory accelerators for streaming graph analytics, as well as software improvements. The Emu architecture is identified as a promising solution for accelerating algorithms with low spatial locality, unbalanced parallelism, and fine-grained memory accesses, since it is able to maintain high memory bandwidth utilization in a worst-case pointer-chasing scenario. The work culminates in a characterization of the Emu Chick hardware prototype, proposing efficient programming primitives, highlighting necessary system improvements, and demonstrating the potential for greatly improved performance on this important class of workloads.
    URI
    http://hdl.handle.net/1853/60228
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology