• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The development of MEMS based biodegradable strain sensors and energy sources for monitoring bone healing

    Thumbnail
    View/Open
    TSANG-DISSERTATION-2018.pdf (11.98Mb)
    Date
    2018-05-21
    Author
    Tsang, Melissa
    Metadata
    Show full item record
    Abstract
    A sensor that lasts forever is not always desirable. In recent years, the field of biodegradable electronics has developed to dually address transient disease states and to minimize environmental waste. This presentation focuses on the development of MEMS based biodegradable strain sensors and energy sources for monitoring bone healing. Current demonstrations of biodegradable devices in literature have been limited by materials and fabrication. As such, this research emphasizes the expansion of materials and fabrication schemes for the micropatterning and integration of biodegradable materials in MEMS. The non aqueous electrodeposition of magnesium (Mg), passivation schemes with pulse plated zinc (PP Zn) and fluorinated hydroxyapatite (FHA), barrier encapsulation strategies, as well as degradable conductive composites are examined and, subsequently, harnessed for the development of biodegradable piezoresistive strain sensors and galvanic energy sources. Analogous non degradable strain sensors were developed to provide a basis for comparison, as well as to better understand the intended design space. The results culminated in the in vivo deployment of a wireless strain sensing system within a rodent femoral defect model and cytotoxicity results confirming the biocompatibility of the examined materials. Together, this research demonstrated electroplated Mg based strain sensors and energy sources as a trajectory towards a fully biodegradable system and, beyond the scope of bone healing, supported the field of biodegradable MEMS through the expansion of materials fabrication and characterization for use in widgets not intended to last forever.
    URI
    http://hdl.handle.net/1853/60236
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology