• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Brownian dynamics studies of DNA internal motions

    Thumbnail
    View/Open
    MA-THESIS-2018.pdf (12.96Mb)
    S3_movie.mpg (16.12Mb)
    S2_movie.mpg (16.64Mb)
    S1_movie.mpg (9.455Mb)
    Date
    2018-12-04
    Author
    Ma, Benson Jer-Tsung
    Metadata
    Show full item record
    Abstract
    Earlier studies by Chow and Skolnick suggest that the internal motions of bacterial DNA may be governed by strong forces arising from being crowded into the small space of the nucleoid, and that these internal motions affect the diffusion of intranuclear protein through the dense matrix of the nucleoid. These findings open new questions regarding the biological consequences of DNA internal motions, and the ability of internal motions to influence protein diffusion in response to different environment factors. The results of diffusion studies of DNA based on coarse-grained simulations are presented. Here, our goals are to investigate the internal motions of DNA with respect to external factors, namely salt concentration of the solvent and intranuclear protein size, and to understand the mechanisms by which proteins dif- fuse through the dense matrix of bacterial DNA. First, a novel coarse-grained model of the DNA chain was developed and shown to maintain the fractal property of in vivo DNA. Next, diffusion studies using this model were performed through Brownian dynamics simulations. Our results suggest that DNA internal motions may be substantially affected by ion concentrations near physiological ion concentration ranges, with the diffusion activity increasing to a limit with increases in ion concentration. Furthermore, it was found that, for a fixed protein volume fraction, the motions of proteins in a DNA-protein system are substantially affected by the size of the proteins, with the diffusion activity increasing to a limit with decreasing protein radii, but the internal motions of DNA within the same system do not appear to change with changes to protein sizes.
    URI
    http://hdl.handle.net/1853/60813
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23877]
    • School of Computational Science and Engineering Theses and Dissertations [100]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology