• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ultra-compact concurrent multi-directional beamforming receiving network for high-efficiency wireless power transfer (WPT)

    Thumbnail
    View/Open
    HUANG-THESIS-2018.pdf (1.608Mb)
    Date
    2018-12-07
    Author
    Huang, Min-Yu
    Metadata
    Show full item record
    Abstract
    This thesis demonstrates an all-passive ultra-compact low-loss array-based beamforming rectenna array for high-efficiency wireless power transfer (WPT). The detailed circuit analysis and theoretical derivation are presented in the paper, showing that the proposed circuit can achieve full field-of-view (FoV) WPT operation with scalable array-based RF-to-DC efficiency improvement. A proof-of-concept 4-element rectenna design example at 2.4GHz is implemented in a 4-layer FR4-Rogers hybrid PCB. The compact transformer-based 4×4 Butler matrix design with at least 100× size reduction as the passive beamformer is implemented in the WPT design for supporting concurrent multi-direction beam reception. At 2.4GHz, measurement for the Butler matrix exhibits an insertion loss of 0.8dB, a return loss better than 10dB (DC-3GHz), and a peak-to-null ratio > 35dB. Then, with the proposed passive beamformer, the measurement results of the proposed WPT network achieves at least full-FoV 2.4× and a peak 3× RF-to-DC efficiency enhancement compared to conventional rectenna array design. To the best of our knowledge, this is the first complete analysis and demonstration of a compact scalable N-element array-based beamforming rectenna array network for full-FoV high-efficiency WPT.
    URI
    http://hdl.handle.net/1853/60829
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology