• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robust approaches and optimization for 3D data

    Thumbnail
    View/Open
    SAWHNEY-DISSERTATION-2018.pdf (74.71Mb)
    Date
    2018-04-06
    Author
    Sawhney, Rahul
    Metadata
    Show full item record
    Abstract
    We introduce a robust, purely geometric, representation framework for fundamental association and analysis problems involving multiple views and scenes. The framework utilizes surface patches / segments as the underlying data unit, and is capable of effectively harnessing macro scale 3D geometry in real world scenes. We demonstrate how this results in discriminative characterizations that are robust to high noise, local ambiguities, sharp viewpoint changes, occlusions, partially overlapping content and related challenges. We present a novel approach to find localized geometric associations between two vastly varying views of a scene, through semi-dense patch correspondences, and align them. We then present means to evaluate structural content similarity between two scenes, and to ascertain their potential association. We show how this can be utilized to obtain geometrically diverse data frame retrievals, and resultant rich, atemporal reconstructions. The presented solutions are applicable over both depth images and point cloud data. They are able to perform in settings that are significantly less restrictive than ones under which existing methods operate. In our experiments, the approaches outperformed pure 3D methods in literature. Under high variability, the approaches also compared well with solutions based on RGB and RGB-D. We then introduce a robust loss function that is generally applicable to estimation and learning problems. The loss, which is nonconvex as well as nonsmooth, is shown to have a desirable combination of theoretical properties well suited for estimation (or fitting) and outlier suppression (or rejection). In conjunction, we also present a methodology for effective optimization of a broad class of nonsmooth, nonconvex objectives --- some of which would prove problematic for popular methods in literature. Promising results were obtained from our empirical analysis on 3D data. Finally, we discuss a nonparametric approach for robust mode seeking. It is based on mean shift, but does not assume homoscedastic or isotropic bandwidths. It is useful for finding modes and clustering in irregular data spaces.
    URI
    http://hdl.handle.net/1853/61103
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23877]
    • School of Interactive Computing Theses and Dissertations [144]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology