• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Jupiter: A study of atmospheric composition, structure, and dynamics using microwave techniques

    Thumbnail
    View/Open
    BELLOTTI-DISSERTATION-2018.pdf (28.61Mb)
    Date
    2018-02-13
    Author
    Bellotti, Amadeo A.
    Metadata
    Show full item record
    Abstract
    The objective of this research has been to advance the understanding of Jupiter's atmospheric composition, structure and dynamics using microwave techniques. Accurate retrievals of atmospheric parameters in Jupiter’s atmosphere requires accurate models. This work includes laboratory measurements which have been used to refine previously-existing models for the microwave opacity of gaseous ammonia and water vapor. Additionally, this work involves integration of these new models, plus four additional models (derived as part of this work), into an existing forward model for emission from the jovian atmosphere. The four models derived in this work are: (1) The effects of virga on the microwave emission spectrum of Jupiter, (2) The effects of a potential radiatve zone deep in Jupiter's atmosphere, (3) The effect of possible ionized alkali metals in the deep atmosphere on the jovian microwave emission, and (4) auroral effects on the jovian microwave emission. These models were then used to perform retrievals of atmospheric parameters using measurements taken by the Juno MWR. The retrieval utilizes a neural network as a surrogate to the forward model. This surrogate is able to quickly and accurately predict results from the forward model. The surrogate is then paired with the L-BFGS-B minimization algorithm and results in a two part retrieval. The first part retrieves the deep abundance of ammonia and water vapor at a place most resembling an ideal adiabat. The second uses these retrieved values to produce an ammonia distribution map.
    URI
    http://hdl.handle.net/1853/61122
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology