• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hydrocarbon degradation under contrasting redox conditions in shallow coastal sediments of the northern Gulf of Mexico

    Thumbnail
    View/Open
    SHIN-DISSERTATION-2018.pdf (3.376Mb)
    Date
    2018-04-10
    Author
    Shin, Boryoung
    Metadata
    Show full item record
    Abstract
    The objective of this dissertation research was to characterize sedimentary microbial populations that are active in degrading petroleum hydrocarbons that reach the seafloor during accidental oil spills. Whereas most previous work has investigated hydrocarbon-degrading microbial communities in sediments from seep environments that are regularly exposed to high levels of oil, the focus of this study was on non-seep sediments that are not pre-exposed to high levels of petroleum. Anaerobic degradation of petroleum hydrocarbons coupled to sulfate reduction was studied in muddy sediments collected from nearby the Mississippi River delta. Sediment-free enrichment cultures were established and the metabolically active microorganisms that degrade model alkanes and polycyclic aromatic hydrocarbons were characterized. In particular, sulfate-reducing bacteria that degrade the 3 ring PAH, phenanthrene, were identified for the first time in marine environments. The biochemical mechanisms of phenanthrene degradation under sulfate-reducing conditions were further investigated in enrichment cultures using a metagenomic approach. The succession of microbial populations that mediate aerobic hydrocarbon degradation was examined in an experiment conducted in situ at Pensacola Beach. Sediment oil agglomerates of Macondo oil collected from the Deepwater Horizon discharge were buried in beach sands and hydrocarbon-degrading microbial communities were characterized over a 3 year period. Overall, this study provides fundamental science to improve predictions of the fate of petroleum hydrocarbons that are deposited in marine sediments after an oil spill.
    URI
    http://hdl.handle.net/1853/61154
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Earth and Atmospheric Sciences Theses and Dissertations [543]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology