• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fundamental investigations of surface and subsurface damage, and wear in diamond wire sawing of silicon

    Thumbnail
    View/Open
    KUMAR-DISSERTATION-2018.pdf (5.943Mb)
    Date
    2018-05-11
    Author
    Kumar, Arkadeep
    Metadata
    Show full item record
    Abstract
    An impediment to widespread adoption of photovoltaics is the high cost of solar cells, which use mono- or multi-crystalline silicon wafers as substrates. The wafers are cut from silicon ingots using the wire sawing process, which is an expensive step in the manufacturing process. To reduce the cost of solar cells, low-cost, thin silicon wafers of superior surface quality and strength are needed. Recent industry trends indicate a shift from the loose abrasive slurry (LAS) to fixed abrasive diamond wire sawing (DWS) process for slicing silicon wafers. DWS offers several advantages including smaller kerf loss, reduced costs and environmental impact over the LAS process. However, fundamental research to advance the scientific understanding of DWS is lacking. An open problem in DWS is how the abrasive grits fixed to the core wire can be engineered to produce favorable surface and subsurface properties, which would reduce processing time and resources in addition to enhancing the mechanical strength of the substrate. Moreover, cutting multi-crystalline silicon by DWS has known limitations of higher wire consumption. Multi-crystalline silicon is less expensive than mono-crystalline silicon and is therefore expected to enhance the affordability of solar energy. In spite of the advantages of DWS and the low cost of multi-crystalline silicon, lack of fundamental knowledge of the DWS process is a limiting factor for widespread practical application. The goal of this research is to advance the scientific understanding of diamond wire sawing of silicon through fundamental studies of the effects of grit shape, silicon microstructure, abrasive wear, and cutting fluid on the resulting surface and subsurface damage. It is expected that the proposed research will provide the knowledge required to guide future development and optimization of the DWS process to cut brittle materials, including multi-crystalline silicon for photovoltaic applications.
    URI
    http://hdl.handle.net/1853/61170
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Mechanical Engineering Theses and Dissertations [4086]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology