Show simple item record

dc.contributor.authorCollins, Nick
dc.date.accessioned2019-07-25T19:19:49Z
dc.date.available2019-07-25T19:19:49Z
dc.date.issued2019-06
dc.identifier.urihttp://hdl.handle.net/1853/61506
dc.descriptionPresented at the 25th International Conference on Auditory Display (ICAD 2019) 23-27 June 2019, Northumbria University, Newcastle upon Tyne, UK.
dc.description.abstractThe Riemann zeta function is one of the great wonders of mathematics, with a deep and still not fully solved connection to the prime numbers. It is defined via an infinite sum analogous to Fourier additive synthesis, and can be calculated in various ways. It was Riemann who extended the consideration of the series to complex number arguments, and the famous Riemann hypothesis states that the non-trivial zeroes of the function all occur on the critical line 0.5 + ti, and what is more, hold a deep correspondence with the prime numbers. For the purposes of sonification, the rich set of mathematical ideas to analyse the zeta function provide strong resources for sonic experimentation. The positions of the zeroes on the critical line can be directly sonified, as can values of the zeta function in the complex plane, approximations to the prime spectrum of prime powers and the Riemann spectrum of the zeroes rendered; more abstract ideas concerning the function also provide interesting scope.
dc.publisherGeorgia Institute of Technology
dc.rightsLicensed under Creative Commons Attribution Non-Commercial 4.0 International License.
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subjectAuditory display
dc.subjectReimann zeta
dc.titleSonification of the Riemann zeta function
dc.typeProceedings
dc.contributor.corporatenameDurham University, UK. Department of Music
dc.publisher.originalInternational Community on Auditory Display
dc.identifier.doihttps://doi.org/10.21785/icad2019.003


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Licensed under Creative Commons Attribution Non-Commercial 4.0 International License.
Except where otherwise noted, this item's license is described as Licensed under Creative Commons Attribution Non-Commercial 4.0 International License.