• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-objective design, optimization, and condition monitoring of high-performance electric machines for electric propulsion

    Thumbnail
    View/Open
    ZHANG-DISSERTATION-2019.pdf (16.08Mb)
    Date
    2019-05-23
    Author
    Zhang, Shen
    Metadata
    Show full item record
    Abstract
    The objective of the proposed research is to develop methods for the multi-objective design, optimization, and condition monitoring of electric machines, so as to generate the optimal designs and improve machine robustness for electric propulsion. In particular, the selected high-performance electric machines are the switched reluctance machine (SRM) with a simple and robust structure, and the interior permanent magnet (IPM) machine with a high torque density and efficiency. For SRMs, an active current profiling technique integrated multi-objective analytical design and optimization is proposed to generate the optimal design in terms of multiple performance indices, which is proven to be accurate and time-saving, especially for a large search space with multiple prime design variables. The proposed scheme offers machine designers accurate, handy and convenient initial designs, which can be further verified or fine-tuned if necessary. The optimization process is further developed with advanced machine learning algorithms to accelerate the search process and facilitate the final decision-making process with the self-organizing map and t-SNE algorithm. To monitor the demagnetization property of the closed-loop direct torque controlled (DTC) IPMSM, two nonintrusive high-frequency signal injection schemes are proposed for PM temperature estimation via analyzing the PM electrical high-frequency resistance, which is a byproduct of the eddy current loss induced by the applied high-frequency magnetic field. The developed methods bring practical ways to excite a proper amount of high-frequency current into the stator winding, which leads to a simple, accurate, and nonintrusive permanent magnet thermal monitoring scheme for DTC-controlled IPM machines. The demagnetization properties of the IPM machine under the most commonly observed stator inter-turn short circuit fault is also systematically investigated via simulations and experiments, thereby offering machine designers handy information in evaluating the demagnetization fault-tolerant capability of various IPM machine design candidates.
    URI
    http://hdl.handle.net/1853/61715
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology