• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Smart finite elements: An application of machine learning to reduced-order modeling of multi-scale problems

    Thumbnail
    View/Open
    CAPUANO-DISSERTATION-2019.pdf (3.640Mb)
    Date
    2019-05-21
    Author
    Capuano, German
    Metadata
    Show full item record
    Abstract
    To design structures using state-of-the-art materials like composites and metamaterials, we need predictive tools that are capable of taking into account the phenomena occurring at different length scales. However, the upscaling of nonlinear mesoscale behavior to perform system-level predictions is intractable when using conventional modeling techniques. Other methods like multiscale finite elements are capable of solving arbitrary problems, but they tend to be computationally expensive because they rely on detailed models of the element's internal displacement field. We propose a method that utilizes machine learning to generate a direct relationship between the element's state and its forces, skipping altogether the complex and unnecessary task of finding its internal displacements. To generate our model, we choose an existing finite element formulation, extract data from an instance of that element, and feed that data to the machine learning algorithm. The result is an approximated model of the element that can be used in the same context. Unlike most data-driven techniques applied to individual elements, our method is not tied to any particular machine learning algorithm, and it does not impose any restriction on the solver of choice. In addition, we guarantee that our elements are physically accurate by enforcing frame indifference and conservation of linear and angular momentum. Our results indicate that this can considerably reduce the error of the method and the computational cost of producing and solving the model.
    URI
    http://hdl.handle.net/1853/61722
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Aerospace Engineering Theses and Dissertations [1440]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology