• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Data-driven stochastic optimization approaches with applications in power systems

    Thumbnail
    View/Open
    BASCIFTCI-DISSERTATION-2019.pdf (1021.Kb)
    Date
    2019-07-26
    Author
    Basciftci, Beste
    Metadata
    Show full item record
    Abstract
    In this thesis, we focus on data-driven stochastic optimization problems with an emphasis in power systems applications. On the one hand, we address the inefficiencies in maintenance and operations scheduling problems which emerge due to disregarding the uncertainties, and not utilizing statistical analysis methods. On the other hand, we develop a partially adaptive general purpose stochastic programming approach for effectively modeling and solving a class of problems in sequential decision-making.
    URI
    http://hdl.handle.net/1853/61765
    Collections
    • School of Industrial and Systems Engineering Theses and Dissertations [1381]
    • Georgia Tech Theses and Dissertations [22398]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology