• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Combinational machine learning creativity

    Thumbnail
    View/Open
    GUZDIAL-DISSERTATION-2019.pdf (8.932Mb)
    Date
    2019-07-24
    Author
    Guzdial, Matthew James
    Metadata
    Show full item record
    Abstract
    Computational creativity is a field focused on the study and development of behaviors in computers an observer would deem creative. Traditionally, it has relied upon rules-based and search-based artificial intelligence. However these types of artificial intelligence rely on human-authored knowledge that can obfuscate whether creative behavior arose due to actions from an AI agent or its developer. In this dissertation I look to instead apply machine learning to a subset of computational creativity problems. This particular area of research is called combinational creativity. Combinational creativity is the type of creativity people employ when they create new knowledge by recombining elements of existing knowledge. This dissertation examines the problem of combining combinational creativity and machine learning in two primary domains: video game design and image classification. Towards the goal of creative novel video game designs I describe a machine-learning approach to learn a model of video game level design and rules from gameplay video, validating the accuracy of these with a human subject study and automated gameplaying agent, respectively. I then introduce a novel combinational creativity approach I call conceptual expansion, designed to work with machine-learned knowledge and models by default. I demonstrate conceptual expansion’s utility and limitations across both domains, through the creation of novel video games and applied in a transfer learning framework for image classification. This dissertation seeks to validate the following hypothesis: For creativity problems that require the combination of aspects of distinct examples, conceptual expansion of generative or evaluative models can create a greater range of artifacts or behaviors, with greater measures of value, surprise, and novelty than standard combinational approaches or approaches that do not explicitly model combination.
    URI
    http://hdl.handle.net/1853/61790
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23877]
    • School of Interactive Computing Theses and Dissertations [144]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology