• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analytical performance analysis in laser-assisted and ultrasonic vibration-assisted milling

    Thumbnail
    View/Open
    FENG-DISSERTATION-2019.pdf (5.011Mb)
    Date
    2019-07-26
    Author
    Feng, Yixuan
    Metadata
    Show full item record
    Abstract
    The performance of machining can be evaluated through milling forces, temperature field, residual stress profile of machined surface, surface roughness, and tool wear. On one hand, it is of practice interest to be able to predict the performance under designed process parameters such as tool geometry, laser power, vibration amplitude, feed rate, and cutting depth. For this study, the analytical models are built to predict the force, temperature, residual stress, surface roughness, and tool wear in laser-assisted and ultrasonic vibration-assisted milling. On the other hand, people want to know the possible combination of process parameters to achieve required target performance. Therefore, inverse analysis is proposed on milling forces, residual stress, surface roughness, and tool life, in laser-assisted milling. The method uses the analytical model to solve the direct problem and applies a variance-based recursive method to guide the inverse analysis. The forward problem methodology is valuable in terms of providing an accurate and reliable reference for the prediction of milling forces, temperature, residual stress, tool wear, and surface roughness. The inverse problem methodology is valuable in terms of guiding the selection of process parameters based on desired target performances. The effects of laser preheating and grain growth are considered in laser-assisted milling, while the intermittent tool-workpiece separation is considered in ultrasonic vibration-assisted milling. All proposed models are validated through experiments with high accuracy, and the effect of each process parameter on the target performance is presented through the sensitivity analysis. A computing platform is also built to incorporate all algorithms consisting of several graphical user interfaces.
    URI
    http://hdl.handle.net/1853/61802
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Mechanical Engineering Theses and Dissertations [4086]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology