• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • School of Civil and Environmental Engineering Publications and Presentations
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • School of Civil and Environmental Engineering Publications and Presentations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    XFEM to couple nonlocal micromechanics damage with discrete mode I cohesive fracture

    Thumbnail
    View/Open
    2019_cmame_jin_arson.pdf (3.568Mb)
    Date
    2019-09
    Author
    Wencheng, Jin
    Arson, Chloé
    Metadata
    Show full item record
    Abstract
    A computational tool is developed to simulate the propagation of a discrete fracture within a continuum damage process zone. Microcrack initiation and propagation prior to coalescence are represented by a nonlocal anisotropic Continuum Damage Mechanics (CDM) model in which the crack density is calculated explicitly. A damage threshold is defined to mark the beginning of crack coalescence. When that threshold is reached, a cohesive segment is inserted in the mesh to replace a portion of the damage process zone by a segment of discrete fracture. Discretization is done with the extended Finite Element Method (XFEM), which makes it possible to simulate fracture propagation without assigning the fracture path a priori. Rigorous calibration procedures are established for the cohesive strength (related to the damage threshold) and for the cohesive energy release rate, to ensure the balance of energy dissipated at the micro and macro scales. The XFEM-based tool is implemented into an open source object-oriented numerical package (OOFEM), and used to simulate wedge splitting and three-point bending tests. Results demonstrate that the proposed numerical method captures the entire failure process in mode I, from a mesh-independent diffuse damage zone to a localized fracture. Future work will investigate mixed mode fracture propagation.
    URI
    http://hdl.handle.net/1853/61824
    Collections
    • School of Civil and Environmental Engineering Publications and Presentations [113]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology