• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • School of Civil and Environmental Engineering Publications and Presentations
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • School of Civil and Environmental Engineering Publications and Presentations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DEM analysis on the role of aggregates on concrete strength

    Thumbnail
    View/Open
    2019_coge_wang_concrete.pdf (20.05Mb)
    Date
    2019-10-02
    Author
    Wang, Pei
    Gao, Nan
    Ji, Koochul
    Stewart, Lauren
    Arson, Chloé
    Metadata
    Show full item record
    Abstract
    This study aims to understand the micro-mechanisms that drive fracture propagation in concrete and to assess the roles of the strength of aggregates and of the aggregate/mortar interfacial transition zone (ITZ) on concrete strength. We use the Discrete Element Method (DEM) to model concrete samples. Mortar is represented by a volume of bonded spherical elements. Bonds are governed by a new displacement-softening law. Aggregate centroids are randomly placed in the DEM sample. We use CT scan images of real aggregates to plot 3D aggregate contours. The spherical elements that are contained in 3D contours around the randomly placed centroids are replaced by clusters with aggregate properties. The number and the size of the clusters are determined from the experimental Particle Size Distribution. The DEM concrete model is calibrated against uniaxial compression tests and Brazilian tests of both mortar and concrete. It is found that: At same aggregate volume fraction, a concrete sample with randomly placed aggregates and ITZ bonds is stronger; Concrete strength is linearly related to aggregate tensile strength; A linear relationship exists between the contact ratio in the mortar/aggregate ITZ and concrete strength; The ITZ has more influence on concrete strength than aggregate tensile strength.
    URI
    http://hdl.handle.net/1853/61888
    Collections
    • School of Civil and Environmental Engineering Publications and Presentations [109]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology