• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Framework to Assess Effects of Structural Flexibility on Dynamic Loads Developed in Maneuvering Aircraft

    Thumbnail
    View/Open
    Framework_to_Assess_Effects_of_Structural_Flexibility_on_Dynamic_Loads_Developed_in_Maneuvering_Aircraft.pdf (1.211Mb)
    Date
    2018-06
    Author
    Sarojini, Darshan
    Duca, Ruxandra
    Solano, Heriberto D.
    Chakraborty, Imon
    Briceno, Simon
    Mavris, Dimitri N.
    Metadata
    Show full item record
    Abstract
    Sizing loads for major aircraft structural components are often experienced during dynamic maneuvers, several of which are described within the Federal Aviation Regulations as part of certification requirements. A simulation and analysis framework that permits such dynamic loads to be assessed earlier in the design process is an advantage for designers and aligned with the trend towards certification by analysis. Such a framework is demonstrated in this paper using the case of a business jet performing a longitudinal checked pitch maneuver. The maneuver is simulated with a six degree-of-freedom MATLAB/Simulink simulation model, using the aircraft aerodynamic characteristics, mass properties, and an adequate level of modeling for the flight control system and pilot control action. The effects of structural flexibility and deformation of the lifting surfaces and fuselage under maneuver loads are modeled by tracking a number of structural degrees-of-freedom for each. The modular nature of the simulation setup facilitates the assessment of multiple maneuvers, analysis of sensitivity to uncertainty, as well as the identification of the impact of structural flexibility through flexible versus rigid maneuver simulations.
    URI
    http://hdl.handle.net/1853/61910
    Collections
    • Aerospace Systems Design Laboratory Publications [297]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology