• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multidisciplinary Analysis of Aero-Propulsive Coupling for the OWN Concept

    Thumbnail
    View/Open
    Aviation_2018.pdf (5.385Mb)
    Date
    2018
    Author
    Ahuja, Jai
    Renganathan, Sudharshan Ashwin
    Berguin, Steven
    Mavris, Dimitri N.
    Metadata
    Show full item record
    Abstract
    The Over Wing Nacelle (OWN) concept enables the installation of turbofans with high bypass ratios for improved effciency in commercial transport vehicles, in addition to offering other advantages in the form of (i) mitigation of jet noise, (ii) foreign object damage avoidance and (iii) jet-powered lift. While these benefits can be offset by the large transonic drag rise, aerodynamic shape optimization of the wing and nacelle outer mold lines can help realize the full aerodynamic potential of the OWN concept. However, if coupling between the airframe aerodynamics and the propulsion system is strong, multidisciplinary optimization may need to be conducted. In this paper, the aerodynamics-propulsion coupling in the OWN concept is studied. A high fidelity Reynolds Averaged Navier Stokes (RANS) model along with a low fidelity engine thermodynamic cycle analysis model are used to represent the aerodynamic and propulsion systems respectively. The necessary coupling variables are identified and the coupled system is solved for disciplinary feasibility using the Fixed Point Iteration technique. The Common Research Model (CRM) wing and nacelle are used as the baseline geometry to carry out the study. The study reveals that for the OWN concept, aerodynamics-propulsion coupling is not significant enough to warrant multi-disciplinary shape optimization. While airframe aerodynamics has a strong effect on the propulsion system, the reverse interaction is weaker.
    URI
    http://hdl.handle.net/1853/61939
    Collections
    • Aerospace Systems Design Laboratory Publications [303]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology