• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of Parametric Power Generation and Distribution Subsystem Models at the Conceptual Aircraft Design Stage

    Thumbnail
    View/Open
    cinar_et_al_2017_development_of_parametric_power_generation_and_distribution_subsystem_models_at_the_conceptual_aircraft_design_stage.pdf (726.1Kb)
    Date
    2017-01
    Author
    Cinar, Gokcin
    Mavris, Dimitri N.
    Emeneth, Mathias
    Schneegans, Alexander
    Fefermann, Yann
    Metadata
    Show full item record
    Abstract
    The ongoing efforts to reduce aviation related greenhouse gas emissions and fuel burn have led to advancements in power generation and distribution (PG&D) subsystem technology. Due to the absence of historical data, PG&D subsystem models must be created from first-order analysis without compromising crucial information on their characteristics. This paper demonstrates the development of parametric, physics-based subsystem models such as battery, electric motor, power distribution and management system, and propeller speed reduction unit for rapid and low-cost sizing, simulation and analysis at early design stages. A special focus was put on rechargeable battery technology and implementing a dynamic (rather than steady-state) discharge behavior into the propulsion architecture. A methodology to integrate the developed subsystem models was presented. A sample application was also provided to demonstrate the combined capabilities of the models. To this end, the models were applied within a sample parallel hybrid electric architecture using Dornier 328 as a test bed. The subsystem behaviors under varying power requirements were then analyzed. Finally, the importance of having more dimensionality at the subsystem level at early design stages was highlighted by comparing the results of two different architectural choices.
    URI
    http://hdl.handle.net/1853/61952
    Collections
    • Aerospace Systems Design Laboratory Publications [308]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology