• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identifying Instantaneous Anomalies in General Aviation Operations

    Thumbnail
    View/Open
    identifying_instantaneous_anomalies_in_general_aviation_operations.pdf (2.505Mb)
    Date
    2017-06
    Author
    Mavris, Dimitri N.
    Puranik, Tejas G.
    Metadata
    Show full item record
    Abstract
    Quantification and improvement of safety is one of the most important objectives among the General Aviation community. In recent years, data mining techniques are emerging as an important enabler in the aviation safety domain with a number of techniques being applied to flight data to identify and isolate anomalous (and potentially unsafe) operations. There are two types of anomalies typically identified - flight-level (where the entire flight exhibits patterns deviating from nominal operations) and instantaneous (where a subset or few instants of the flight deviate significantly from nominal operations). Energy-based metrics provide measurable indications of the energy state of the aircraft and can be viewed as an objective currency to evaluate various safety-critical conditions across a heterogeneous fleet of aircraft. In this paper, a novel method of identifying instantaneous anomalies for retrospective safety analysis using energy-based metrics is proposed. Each data record is split by sliding a moving window across the multi-variate series of evaluated energy metrics. A mixture of gaussian models is then used to perform clustering using the values of energy metrics and their variability within each window. The trained models are then used to identify anomalies that may indicate increased levels of risk. The identified anomalies are compared with traditional methods of safety assessment (exceedance detection).
    URI
    http://hdl.handle.net/1853/61958
    Collections
    • Aerospace Systems Design Laboratory Publications [297]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology